skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boruch, Jan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> A feature the$$ \mathcal{N} $$ N = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) model shares with extremal black holes is an exponentially large number of ground states that preserve supersymmetry. In fact, the dimension of the ground state subsector is a finite fraction of the total dimension of the SYK Hilbert space. This fraction has a remarkably simple bulk interpretation as the probability that the zero-temperature wormhole — a supersymmetric Einstein-Rosen bridge — has vanishing length. Using chord techniques, we compute the zero-temperature Hartle-Hawking wavefunction; the results reproduce the ground state count obtained from boundary index computations, including non-perturbative corrections. Along the way, we improve the construction [1] of the super-chord Hilbert space and show that the transfer matrix of the empty wormhole enjoys an enhanced$$ \mathcal{N} $$ N = 4 supersymmetry. We also obtain expressions for various two point functions at zero temperature. Finally, we find the expressions for the supercharges acting on more general wormholes with matter and present the superchord algebra. 
    more » « less